Examples of Products and Technologies Developed and Deployed in the Course of Formulating, Implementing, Evaluating, and Improving the Keidanren Action Plan on the Environment

Federation of Electric Power Companies of Japan

Product/Technology	Outline
Heat pumps	Heat pump technology can produce heat energy over input electricity by utilizing heat energy in the air,
	etc., and its energy efficiency is improving year by year through R&D efforts. Heat pumps are used in a
	wide range of applications, including air conditioning, hot water supply, and space heating.
	• The energy efficiency of household air conditioners has roughly doubled in the past 10 years, halving
	electricity consumption.
	• Heat pump technology is also used for commercial and residential water heaters, such as the Eco-Cute
	system which utilizes a natural refrigerant. Such systems have made a major contribution to reducing
	energy consumption and CO_2 emissions.
	• In the industrial sector, higher heat temperature makes it possible to expand the areas of application,
	including replacing conventional boilers with heat pump technology.
USC (ultra supercritical) pressure	This is a conventional power generation system in which steam is generated by burning fuel using a
thermal power generation	boiler and electricity is generated using a steam turbine and generator. USC is designed to generate steam
	with higher conditions (temperature and pressure) in order to raise thermal efficiency, and conditions
	have now reached to 600°C-grade. Japanese utilities have been achieving higher thermal efficiency in
	coal-fired plants compared with those overseas.
LNG combined cycle power	This technology is the combination of a natural gas turbine system, which generates electricity by
generation	pressurized combustion gas in compressed air, and a conventional steam turbine system, which uses the
	steam generated through the heat exchange from the exhaust gas of the gas turbine. It is possible to raise
	thermal efficiency mainly by boosting the temperature of combustion gas, and Japanese utilities have
	been achieving world-leading efficiency levels.
Integrated gasification combined	This type of combined cycle system uses abundant coal resources as gasified fuel. This technology not

Product/Technology	Outline
cycle (IGCC)	only enables a high level of efficiency compared with conventional coal-fired generation but also is compatible with coal types that are not suitable for conventional coal-fired power generation due to their
	low ash-melting point.
Hydroelectricity	 Development of small hydroelectric power plants that make effective use of untapped energy sources, such as minimum flows required for dam operation. Improvement of generator output, etc., in conjunction with the replacement of obsolete facilities at existing power plants.

Japan Gas Association

Product/Technology	Outline
Gas cogeneration system	Gas cogeneration systems use city gas as fuel to generate electricity and heat, and achieve high total
	energy efficiency.
Natural gas conversions to meet	Industrial combustion equipment such as furnaces and boilers that use fossil fuels are replaced or
industrial heat demand	converted to run on natural gas, which produces low CO ₂ emissions. Widespread use of highly efficient
(high-efficiency burners)	burners (regenerative burner systems, etc.) is encouraged to contribute to even greater reduction of CO ₂
	emissions.
Residential fuel cell system	"ENE-FARM" generates electricity using city gas or LPG, while using the waste heat generated in the
("ENE-FARM")	process to produce hot water (including hot water for heating applications) for household use.
	ENE-FARM achieves high total energy efficiency.
Latent heat recovery-type water	"Eco-Jozu" is a highly efficient latent heat recovery-type water heater that captures and reuses latent heat
heaters ("Eco-Jozu")	that is exhausted through ventilation in conventional water heaters, achieving a high heat-efficiency rate

Product/Technology	Outline
	of around 95% (conventional water heaters have efficiency levels of around 80%).
Gas-fired solar hot water system	"SOLAMO" uses a gas-fired instantaneous water heater as a supplementary heat source for solar heating
utilizing solar heat for household	devices (gas water heating system using forced circulation solar heat).
use ("SOLAMO")	

Japan Chemical Industry Association

Product/Technology	Outline
Energy conservation through	Maximum use of the cryogenic properties of LNG, the raw material for city gas supply.
maximum use of LNG cryogenic	
energy in industrial complexes	
Cooperative energy-saving	Installation of state-of-the-art, highly efficient large-scale natural gas fired cogeneration facilities to
schemes for multiple companies	supply electricity and steam to neighboring operators while establishing wide-area fuel partnerships with
through installation of large-scale	operators in distant places.
natural gas fired cogeneration	
facilities using the ESCO model	
Energy conservation at ethylene	Reduction of energy use per production volume by partial switching of raw material from naphtha to
plants through raw material	butane.
diversification	

Japan Paper Association

Product/Technology	Outline
Biomass boilers	Boilers using fuel derived from biomass and waste materials.
High-temperature, high-pressure	Highly efficient high-temperature, high-pressure recovery boilers.
recovery boilers	
Energy-saving pulpers	Energy saving in the pulp manufacturing process, including introduction of pulpers with superior
	disaggregation capabilities.

Four Electrical and Electronic Industry Associations

Product/Technology	Outline
Energy-saving appliances for	Improved energy efficiency and reduced standby power consumption through development and
household and office use	introduction of the following products (all percentages are approximate, and take 2011 as the base year
	except LED light bulbs):
	• LCD TVs (32V type): 55% energy saving compared to 2006
	• PCs: 80% energy saving compared to 2007
	• Electric refrigerators (401–450 liters): 65% energy saving compared to 2001
	• Air conditioners (2.8 kW class): 14% energy saving compared to 2001
	• LED light bulbs (typical bulb of around 10 W): 80% energy saving compared to regular 60 W type
	bulb (54 W)
	• Heated toilet seats (instantaneous type): 15–60% energy saving compared to 2001

Product/Technology	Outline
Widespread use of renewable	Achieved world-leading mass production and cost reduction in photovoltaic power generation and
energy (new energy sources)	world's top level of cell conversion efficiency. Promoted widespread use of mega-solar generating
	systems by reducing overall system costs through development of high-efficiency, high-capacity power
	conditioners, etc. Launched world's first fuel cell cogeneration system in 2005 and started selling to
	consumers in 2009. Mass production and cost reductions have since been encouraging widespread use of
	such systems, while technological advances have been increasing efficiency and system life.
IT-solution-based energy	Achieved energy savings for IT devices, data centers, and networks, and supplied systems utilizing IT to
conservation measures	save energy in applications including videoconferencing, cloud computing, air conditioner monitoring,
	and digital tachometers.

Japan Automobile Manufacturers Association

Product/Technology	Outline
Next-generation vehicles, etc.	Achieved major reductions in CO_2 emissions during the product usage phase by increasing the adoption of fuel efficiency improvement technologies, such as variable valve timing and continuously variable transmission (CVT), and developing and wider diffusion of next-generation vehicles, including hybrid
	vehicles and electric vehicles.

Japan Rubber Manufacturers Association

Product/Technology	Outline
Fuel-efficient tyres	Improved vehicle fuel economy by lowering the rolling resistance of tyres (thus reducing both gasoline
	consumption and CO ₂ emissions). For the further promotion of fuel-efficient tyres, a world-leading "Tyre
	Labeling System" was launched in 2010 and steadily promoted. This system provides consumers with a
	clear understanding of tyre performance (rolling resistance and wet grip).
	Note: Conventional tyre design entailed a trade-off between rolling resistance and wet grip (safety), but
	technological innovation has now enabled both attributes to be improved simultaneously.
Run-flat tyres	Run-flat tyres enable vehicles to safely keep running for a certain distance at limited speed even if air
	pressure is lost. Since this eliminates the need to carry a spare tyre, they also help to make vehicles lighter
	and reduce fuel consumption. Moreover, by reducing the production of spare tyres they contribute to
	resource savings, reduction of energy use for manufacturing, and lower CO ₂ emissions in the disposal
	phase.
Retread tyres	Extending tyre life through the use of retreads (recycled tyres) contributes to reductions in the use of raw
	materials and energy in manufacturing and lower CO ₂ emissions in the disposal phase.
Tyres using renewable materials	These tyres help to save diminishing resources and encourage the use of recycled materials in the
	manufacturing phase and lower CO ₂ emissions in the disposal phase.
Smaller, lighter parts	Smaller and lighter automotive components improve vehicle fuel efficiency, rubber parts reduce motive
	energy requirements, and plastic palettes reuse resources and improve fuel economy in the transportation
	phase.
Energy-saving belts	Rubber belts with high transmission efficiency reduce energy loss during equipment operation (by
	reducing motive energy requirements).

Product/Technology	Outline
Thermal insulation building	Development and supply of thermal insulation building materials and other green products (including
materials, etc.	rigid urethane materials, highly transparent heat-reflective film for windows, and thermal insulation roof
	coatings) reduce power consumption for air conditioning, etc.
Parts for energy-saving products	Development and deployment of film for solar cells, and development, improvement, and supply of
	products compatible with energy-saving functions.
Energy-saving technologies for	Development and introduction of highly efficient production facilities and application of manufacturing
manufacturing	expertise.

Brewers Association of Japan

Product/Technology	Outline
Energy fuel conversion and	Fuel for boilers used to produce steam was switched from fuel oil to low-CO ₂ -emission gas in breweries
upgrading to small through-flow	where city gas supplies are available. Further major reductions in CO ₂ emissions were made by upgrading
boilers	from large boilers to highly efficient small through-flow boilers.
Installation of anaerobic	Major reduction in electricity required for aeration was achieved by installing anaerobic facilities to
wastewater treatment facilities	pretreat wastewater emitted by the production process prior to aerobic treatment.
Installation of biogas	Using biogas generated during anaerobic wastewater treatment as a fuel has sharply reduced indirect CO ₂
cogeneration systems	emissions associated with electricity purchase.

Federation of Pharmaceutical Manufacturers' Associations of Japan

Product/Technology	Outline
Reduction of fluorocarbons in	Improved manufacturing technologies and development and deployment of non-fluorocarbon
aerosols	formulations, such as powder inhalants, have reduced emissions of hydrochlorofluorocarbon for inhalation aerosols during the usage phase.

Japan Sugar Refiners' Association

Product/Technology	Outline
Installation of auto-vapor	Steam emitted during production is adiabatically compressed in a steam compressor and the heated
Boiler downsizing	Installation of multiple small boilers enables producers to operate only the number of boilers required to
	produce the necessary amount of steam, avoiding wasteful steam production.
Inverter-drive motors	Inverters adjust motor speed as required, reducing wasteful electricity consumption.

Real Estate Companies Association of Japan

Product/Technology	Outline
Energy-saving, low-emission	Introduction of energy-saving equipment and devices such as those listed below is promoting apartment
apartment buildings	buildings with comprehensive energy-saving and emission-reduction functions.
	• Thermal load reduction: High-insulation exterior cladding, high-insulation window glass and sashes
	Lighting: LED lighting, motion sensors, light sensors

Product/Technology	Outline
	• Water heating: Eco-Jozu latent heat recovery-type gas-fired instantaneous water heaters, Eco-Cute
	natural refrigerant heat pump water heaters
	• Water saving: Low-flow shower heads, water-saving toilets, water-saving faucets
	• Renewable energy: Photovoltaic power generation systems, gas-fired water heating systems using
	solar heat
Energy-saving, low-emission	Encouraged the design of buildings achieving energy-savings more than 10% greater than standards set
office buildings	by government through introduction of energy-saving equipment and devices such as the following:
	• Thermal load reduction: Enhanced building insulation, installation of louvers and sunshades,
	high-insulation glass, double-skin exteriors, airflow windows, solar radiation control blinds
	• Air conditioning: Highly efficient heat sources and air conditioning equipment, cogeneration systems,
	thermal storage systems, radiant air conditioning
	• Lighting: LED lighting, motion sensors, control systems compensating for daylight and reducing
	initial illumination levels, task-ambient lighting
	• Ventilation: Automated ventilation control based on CO ₂ levels, natural ventilation
	• Water heating: Highly efficient water heaters, cogeneration systems utilizing waste heat
	Elevators: Inverter control, group control systems
	Renewable energy: Photovoltaic power generation systems, geothermal-powered systems
	• Introduction of highly efficient building energy management systems (BEMS)
Energy-saving, low-emission	Introduction of measures such as those listed below when undertaking wide-area or district development
initiatives in wide-area/district	projects encourages energy conservation and lower CO ₂ emissions that also spread to surrounding areas.
development projects	• Wide-area energy interchange schemes and utilization of unused and renewable energy
	Promotion of greening of development sites

Product/Technology	Outline
	• Use of district heating and cooling systems
	Load averaging through mixed-use development
	• Introduction of area energy management systems (AEMS)
Technologies to make everyday	Development of display systems that further increase consumer interest in energy usage and desire to
energy consumption more visible	conserve energy, such as technologies enabling residents to monitor energy consumption by clearly
at home	displaying amounts of gas and electricity used and systems displaying household energy use rankings in
	apartment blocks.

NTT Group

Product/Technology	Outline
Greening of machine rooms and	Energy conservation and reduction of electricity use in machine rooms, ^{*1} data centers, and wireless base
data centers	stations, which use large volumes of electricity in the course of providing ICT services. The following air
	conditioning, electricity supply, and energy management technologies have been developed and
	introduced.
	<u>Air conditioning</u>
	• Development of automated airflow control systems for optimal temperature and humidity adjustment
	in machine rooms and data centers
	• Development of external air induction technology enabling servers to be supplied with airflow at the
	required temperature, humidity, and quantity, according to external environmental conditions
	Introduction of highly efficient water-cooled air conditioners

Product/Technology	Outline
	 Electricity supply Development and introduction of high-voltage direct current power source technology that improves electricity supply efficiency and eliminates power loss due to AC/DC conversion by supplying DC electricity directly to ICT devices Use of renewable energy including solar and wind power Installation of lithium-ion batteries to store surplus electricity generated by fuel cells, etc. Energy management Development and introduction of BEMS that optimize energy supply and demand in machine rooms and data centers through unified management and highly coordinated control of air conditioner operation and loads on servers and other ICT devices *1. Machine rooms: Spaces where ICT devices are managed and operated
Reduction of electricity consumption by networks	 Research and development to achieve dramatic reductions in electricity consumption by ICT services. <u>Recent research results</u> Development of laser technology enabling data transmission with ultralow power consumption of one-tenth the energy of the conventional approach Power consumption of nanoscale circuits reduced using plasmons, which are collective charge oscillations, and graphene, a new carbon-based material Power-saving technology developed for LSI chips^{*2} compatible with the next generation of high-speed broadband access systems *2 LSI chip: A large-scale integrated circuit chip containing around 1 000–100 000 circuit elements
Creation of smart communities	Development of technology that creates smart communities by applying technologies for making energy supply and demand visible and optimizing control to entire districts, not just individual houses and

Product/Technology	Outline
	buildings.
	Specific examples
	• Conducted R&D on smart community platforms that use automated demand response to enable
	wide-area coordination of electricity supply and demand.
	• Developed service platforms enabling electric utilities and aggregators to provide automated demand
	response services without owning facilities, by locating smart community platforms in the cloud.
	(First company in Japan to be certified as compliant with OpenADR 2.0, the international standard for
	automated demand response. Used in government agency/university trial.)

Association of Japanese Private Railways

Product/Technology	Outline
Variable voltage variable	VVVF inverters convert DC power from rail lines to three-phase AC power and control voltage and
frequency (VVVF) inverters	frequency to drive AC motors. This technology helps reduce electricity consumption through efficient
	control of motors.