低炭素社会実行計画

2012年8月24日 社団法人 セメント協会

参加企業:社団法人 セメント協会の加盟会社

八戸セメント株式会社	株式会社デイ・シイ
日鐵セメント株式会社	電気化学工業株式会社
東ソ一株式会社	麻生ラファージュセメント株式会社
株式会社トクヤマ	明星セメント株式会社
琉球セメント株式会社	三菱マテリアル株式会社
苅田セメント株式会社	新日鐵高炉セメント株式会社
太平洋セメント株式会社	日立セメント株式会社
敦賀セメント株式会社	住友大阪セメント株式会社
宇部興産株式会社	合計17社

国内のセメント製造会社(エコセメント、白色セメントを除く)の全てが参加 ※ 2011年度の生産割合:99.73%

■じ計 社団法人セメント協会

セメント業界の省エネへの取り組み

〈 自主行動計画 〉

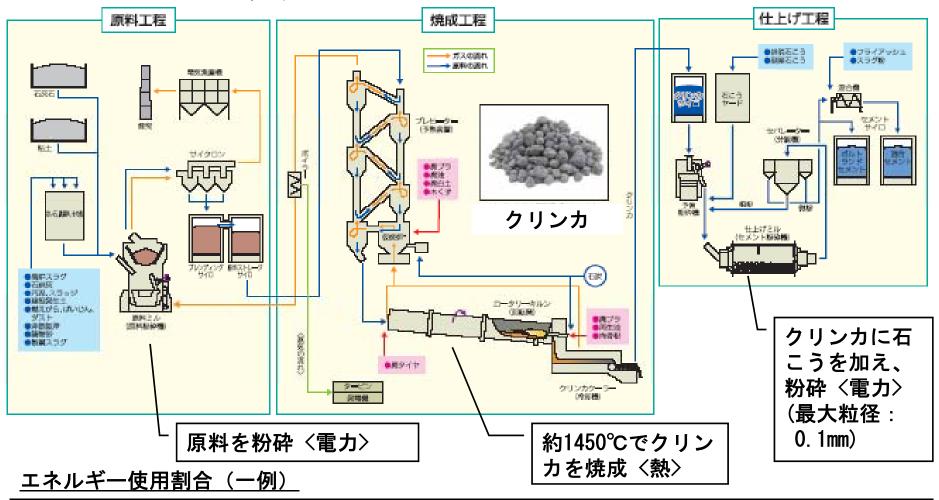
く業界目標>

2008年度から2012年度におけるセメント製造用エネルギー(*)原単位の平均を1990年度(3,586MJ/t-セメント)に対し、3.8%低減。

目標値:3,451MJ/t-セメント

<2008~2010年度の実績> 3,448MJ/t-セメント(▲3.8%)

- (*) [セメント製造用熱エネルギー]
 - +[自家発電用熱エネルギー]
 - + 「購入電力エネルギー」



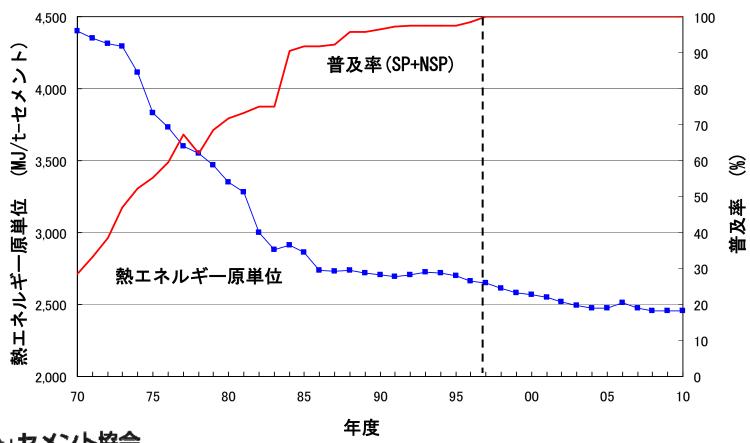
〈 低炭素社会実行計画 〉

基準年:2005年度 → 目標年:2020年度

セメントの製造工程

	原料工程	焼成工程	仕上げ工程
熱	0 %	98%	2 %
電力	30%	3 3 %	3 7 %

セメント製造用エネルギーの低減対策


1. 省エネ技術(設備)の普及

2. エネルギー代替廃棄物等の使用拡大

熱エネルギー原単位(MJ/t-セメント)の推移

最も効果の高い省エネ設備である「SP」、「NSP」は1997年度で全ての工場で導入された。 この導入により、熱エネルギー原単位は大幅に減少した。

1970年度: 4399 (MJ/t-cem) 1997年度: 2651 (MJ/t-cem) 削減率: 39.7%

主な省エネ技術の普及状況および見通し

主な省エネ技術の普及率

単位:%

項目	省エネ効果	2005年度 実績	2010年度 実績	2020年度 見通し	2030年度 見通し
排熱発電	排熱量の削減	56	60	68	68
エアービーム式 クーラ	熱回収の改善	37	50	57	58
竪型石炭ミル	粉砕電力量の削減	87	90	96	98

省エネ技術(設備)の効果

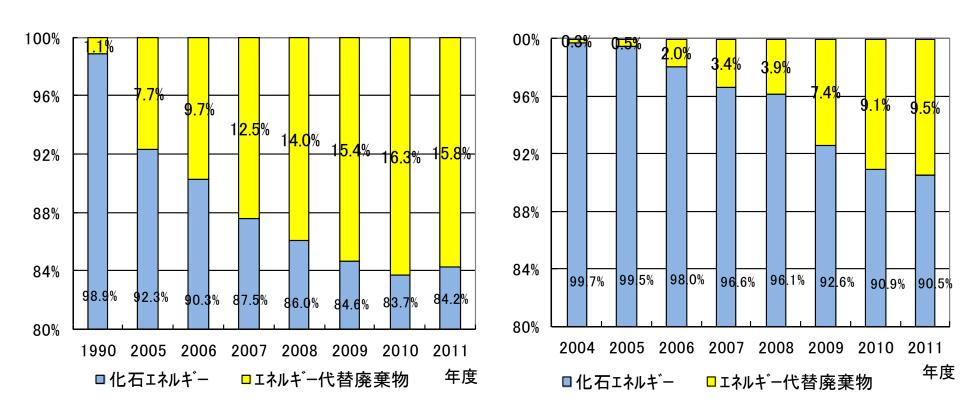
〈 排熱発電 〉

項目	内容
2005年度の普及率	56%
エネルギー削減量	発電量:約35~40 kWh/t-クリンカ
イニシャルコスト	1式:20億円程度
技術の内容	SP、NSP方式のプレヒータ出口の排ガス温度は約400℃となり、その熱を発電に用いる。また、クリンカークーラーからも250~350℃程度の排気が発生し、その熱で発電を行う。

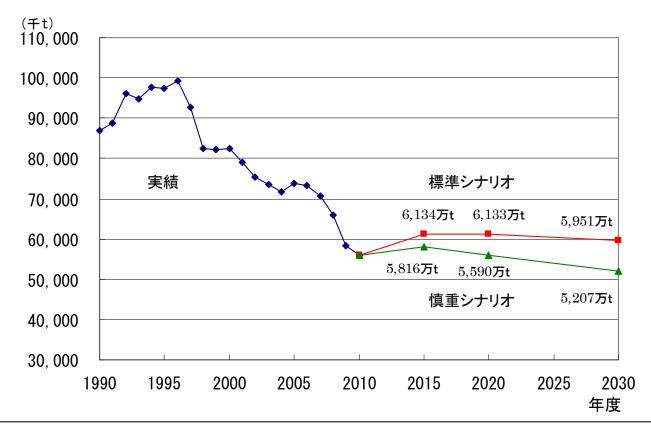
出典:生産技術専門委員会報告T-22(省エネルギー・省資源技術に関する報告書)

〈 エアービーム式クーラー 〉

項目	内容
2005年度の普及率	3 7 %
エネルギー削減量	〈 従来の空気室式との比較 〉 熱量原単位の低減: 42~167 MJ/t-クリンカ 電力原単位の低減: 0.5~1.5 kWh/t-クリンカ
イニシャルコスト	1基:1.5~3億円程度(クーラー1段目の改造の場合)
技術の内容	従来の空気室式では、グレート位置によって冷却空気の通 風状態が異なることとなり、熱回収効率の改善には限界が あった。


出典:生産技術専門委員会報告T-22(省エネルギー・省資源技術に関する報告書)

エネルギー代替廃棄物等の使用拡大


エネルギー代替廃棄物の使用状況

生産量の見通し (資源エネルギー庁の試算)

【低炭素社会実行計画における2020年度の生産量の見通し】

5590万t (慎重シナリオ(2010年代で実質GDPが年率1.1%))

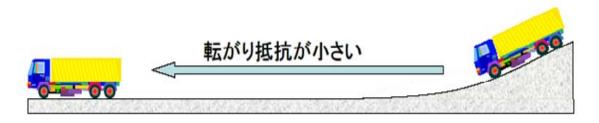
出典:実績(セメントハンドブック) 見通し(2011年8月29日現在)

2020年度におけるエネルギー削減目標 (原油換算、単位: 万kl)

削減方法	2005年度に 対する値	1990年度に 対する値
省エネ技術(設備)の 普及	3. 3	_
エネルギー代替廃棄 物等の使用拡大	3. 6	_
合計	6. 9	28.1 *

(*) 下記の原単位の差と生産量の見通しより算出 2020年度のセメント製造用エネルギー原単位の見通し値:3391 MJ/t-セメント 1990年度のセメント製造用エネルギー原単位:3586 MJ/t-セメント

〈換算値〉


1 PJ=2.58 原油換算 万kl

LCA的な観点からの取組みによるCO₂削減への貢献(ポテンシャル)


【舗装における転がり抵抗のイメージ(転がり抵抗の差異)】

コンクリート舗装の場合

同じ自動車を用い、同じ高 低差の坂道を下った場合、 水平部での走行距離は、「転 がり抵抗」で変化する。

※ 本図は実際の転がり抵抗の測定方 法とは異なる。

【 転がり抵抗の差による同一距離走行時の燃料消費量 】

コンクリート舗装を100とした場合、アスファルト舗装では100.8~104.8

環境負荷に関する試算

(温室効果ガス排出量算定・報告マニュアルの値を採用)

〈試算に用いた値〉

軽油の単位発熱量: 0.0377 GJ/L

排出係数 : 0.0187 tC/GJ = 0.0685 tCO₂/GJ

单位CO₂排出量: 2.582 kg/L

貨物車の燃料使用量: 0.0504 L/t·km

(燃料:軽油、最大積載量:10.000~11.999t、営業用)

積載量を11tとし、1km走行した場合

軽油の使用量: 0.5544 L

CO₂排出量 : 1.431 kg

環境負荷に関する試算

- 積載量を11tとし、1km走行した場合 -

《前頁の計算値》

(アスファルト舗装として仮定)

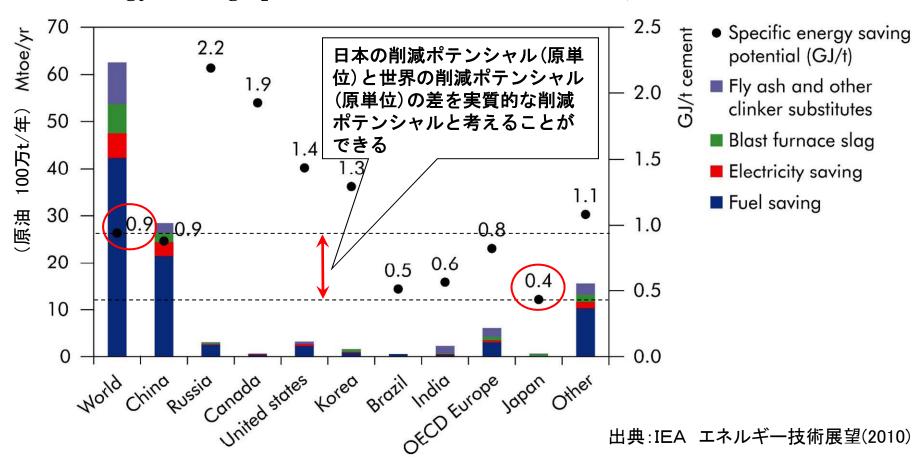
軽油の使用量: 0.5544 L

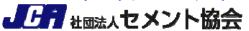
CO₂排出量 : 1.431 kg

【コンクリート舗装では】

軽油の使用量: 0.5500~0.5290 L 軽油の削減量: 0.0044~0.0254 L CO₂排出量の削減量: 11.4~65.6 g

燃費の改善より計算


1台当たりの削減量は小さいが、 舗装面の材質を変えることで継続的に削減が可能


日本の製品・技術による世界のCO2削減への貢献

(世界におけるエネルギー削減ポテンシャル)

Energy savings potential in 2007 for cement, based on BATs

わが国セメント産業のエネルギー効率は世界最高レベルにある。

日本の製品・技術による世界のCO₂削減への貢献 (世界におけるエネルギー削減ポテンシャル)

世界におけるエネルギー削減ポテンシャル=世界のセメント生産量(日本を除く)× [(世界のエネルギー削減ポテンシャル)ー(日本のエネルギー削減ポテンシャル)] =世界のセメント生産量(日本を除く)×[0.9-0.4]

世界におけるエネルギー削減ポテンシャルの計算結果

	年	2005	2010	2020	2030
低位シナリオ	削減ポテンシャル(Mtoe)	28.8	34.3	39.4	39.2
	生産量見通し(百万t)	2408	2871	3302	3281
高位シナリオ	削減ポテンシャル(Mtoe)	28.6	34.8	42.4	45.4
	生産量見通し(百万t)	2396	2917	3547	3805

備考:生産量の見通しは「IEA エネルギー技術展望(2010)」のデータを用いて、直線補間により求めた。 Mtoe=Mega tonne of oil equivalent

