○ 電力(電気事業連合会)

火力発電所の熱効率の比較(発電量に対する投入熱量)(2007年)

日本	イギリス	北欧	フランス	ドイツ	米国	中国	インド
100	98	103	104	109	111	126	135

出所: ECOFYS社(オランダの調査会社) "International Comparison of Fossil Power Efficiency and CO2 Intensity" (2010年) 数値が小さいほど一定のエネルギーで多くの電気エネルギーを発生できることを示す

電気事業のCO2排出原単位(発電端)(2008年)

	日本	フランス	カナダ	イタリア	ドイツ	イギリス	米国	中国	インド
ſ	100	20	44	107	115	117	134	195	242

出所:IEA Energy Balances of OECD Countries 2010Edition/ Energy Balances of Non-OECD Countries 2010Edition より電気事業連合会にて 試算

2008年の値

フランスけ原子力比率が高く(約8割) カナダけ水力発雷比率が高い(6割)ため CO2排出原単位け低いレベルにあろ

○ 石油(石油連盟)

製油所のエネルギー消費指数の比較(2004年)

日本	先進アシア諸国 (中国除き)	西欧	米国・カナダ
100	101	103	113

出所:Solomom associates 仕(米国のコンサルタント会社)の調査結果より作成

同社独自の指標である「エネルギー消費指数」を比較したもので、同指数は換算通油量を用いており、石油業界が自主行動計画で採用している製油所エネルギー原単位と類似した性質を持ち、数値が低いほど高効率であることを示す

○ 鉄鋼(日本鉄鋼連盟)

鉄鋼業のエネルギー原単位の比較(2005年)

日本	韓国	ドイツ	イギリス	米国	中国	インド	ロシア
100	102	112	122	130	123	125	143

出所:(財)地球環境産業技術研究機構(RITE)「エネルギー効率の国際比較(発電、鉄鋼、セメント部門)」(2009年10月) 日訳、指数化は日本鉄鋼連盟

○ 化学(日本化学工業協会)

電解苛性ソーダの製造に関わる電力消費量の比較(2004年)

日本	台湾	韓国	中国	米国	西欧	東欧
100	100	100	104	110	119	115

出所: SRI Chemical Economic Handbook (August 2005) 及び ソーダハンドブックより作成

○ 製紙(日本製紙連合会)

紙・板紙製造における化石エネルギー原単位の比較(2004-2005年)

日本	フィンランド	ドイツ	フランス	ノルウェー	ブラジル	米国	チリ
100	115	116	145	154	155	194	246

出所:(財)日本エネルギー経済研究所、平成19年度製造業技術対策調査 (製紙業の環境エネルギー分野に関する調査)報告書「各国のパルプ・紙・板紙の生産量及びエネルギー消費量等」

○ セメント(セメント協会)

クリンカtあたりエネルギー消費量比較(2003年)

日本	1.	ドイツ	インド	ブラジル	韓国	米国	中国
100)	116	124	132	133	155	159

出所: The International Energy Agency (IEA) "Worldwide Trends in Energy Use and Efficiency 2008"より作成

○ 鉱業(日本鉱業協会)

銅精錬工場のエネルギー原単位比較(2000年)

日本	欧州	アジア	北米	南米
100	133	143	154	202

出所: 日本鉱業協会調べ

銅精製工場のエネルギー原単位(MJ/ton)を比較したもの

○ アルミニウム(日本アルミニウム協会)

板材圧延工程での消費エネルギー量比較(2000年)

日本	世界
100	127

出所: 国際アルミニウム協会(International Aluminium Institute)、LCA日本フォーラムLCAデータベース(2006年)